1.1 Pythagorean Theorem

- In a right triangle, the side opposite the 90° angle is called the hypotenuse
and the remaining two sides are called the legs.

Note: Vertices are labeled with CAPITAL LETTERS while, sides are labeled with small letters.

The great Greek Mathematician Pythagoras discovered an interesting relation between the side lengths of the right triangle.

Pythagorean Theorem: If triangle $A B C$ is a right triangle, then

$$
c^{2}=a^{2}+b^{2}
$$

$\mathrm{A} \quad \mathrm{c}=\sqrt{\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\right)}$
b
Or, if we are solving for the leg.

$$
\begin{gathered}
a^{2}=c^{2}-b^{2} \\
a=\sqrt{\left(c^{2}-b^{2}\right)}
\end{gathered}
$$

Ex 1: find the missing side length

X here is a hypotenuse
So we use $c^{2}=a^{2}+b^{2}$

Ex 2: find the missing side length

X here is a hypotenuse
So we use $\mathbf{c}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}+\mathbf{b}^{\mathbf{2}}$

Ex 3: find the missing side length

X here is a leg
So we use $\mathbf{a}^{2}=\mathbf{c}^{\mathbf{2}}-\mathrm{b}^{\mathbf{2}}$

Ex 4: find the missing side length

X here is a hypotenuse So we use $\mathbf{c}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}+\mathbf{b}^{\mathbf{2}}$

Ex 5: find the missing side length

X here is a leg So we use $\mathbf{a}^{2}=\mathbf{c}^{\mathbf{2}}-\mathrm{b}^{\mathbf{2}}$

Practice: Page 4

\# 1(a,d), 2(a,d), 3-8

The converse of the Pythagorean Theorem

- The reverse is also true that is if $\mathbf{c}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}+\boldsymbol{b}^{\mathbf{2}}}$ then triangle $A B C$ is a right triangle with angle $\mathrm{C}=90^{\circ}$
- Some common Pythagorean triples are:
$\{3,4,5\},\{5,12,13\},\{8,15,17\},\{9,40,41\}$
- and their multiples like
$\{6,8,10\},\{9,12,15\}$ and $\{10,24,26\}$ etc.

A baseball diamond is really a 90 foot square
Let's say the catcher is throwing the ball from home to second base:
Use Pythagorean Theorem to find out how
far he throws the ball.

Practice: Page 6 \# 9-12, 14, 15, 17

1.2 -A- Rational Numbers

There are different types of numbers:

- Real Numbers:
- Natural
- Integers
- Rational
- Irrational
- Complex Numbers (aka Imaginary Numbers)

Definitions:

$\mathbf{N}:$ Set of Natural numbers : $\{0,1,2,3, \ldots\}$
\mathbf{N}^{*} : Set of non zero natural numbers : $\{1,2,3, \ldots\}$
$\mathbf{Z}:$ Set of Integers : $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbf{Z}^{*} : Set of non zero Integers : $\{\ldots,-3,-2,-1,1,2,3, \ldots\}$
\mathbf{Z}_{+}: Set of positive Integers: $\{0,1,2,3, \ldots) \quad$ same as \mathbf{N}
\mathbf{Z}. : Set of negative Integers: $\{\ldots,-3,-2,-1,0\}$

(1) : Set of Rational numbers

(i.e. numbers that can be written as fractions including terminating decimals ($0.5=\frac{1}{2}$), and repeating decimals ($0 . \overline{5}=\frac{5}{9}$)

Definitions:

(P): are Irrational Numbers, these are non-periodic (non-repeating), non-terminating decimals; so we cannot write them as fractions.
(Ex: $\pi, \sqrt{2}, \sqrt{3}, \sqrt[3]{4}$ etc.)
R: is the Set of Real Numbers, that is all Rational and Irrational numbers: $\mathbf{Q} \cup \mathbf{Q}^{\prime}$ We read this: \mathbf{Q} Union \mathbf{Q} prime.

Ex 1 : place each number in the correct box.

$$
\begin{array}{lllllll}
0 & 0.3 & -3 & -7 & 5 & -2 / 3 & 100
\end{array}
$$

So if we were to put them in nesting boxes (or circles) they would look like this:

\mathbf{N} is a subset of \mathbf{Z} is a subset of \boldsymbol{Q} is a subset of \mathbf{R}
$\mathbf{N} \subseteq \mathbf{Z} \subseteq \boldsymbol{Q} \subseteq \mathbf{R}$
Ex 2: fill using either \subseteq or \nsubseteq or \in or \notin

Top view:

Ex 3 : place each number in the correct box.
$\begin{array}{llllllllll}-1 & -0 . \overline{6} & -\sqrt{5} & 11 / 7 & -12 & \sqrt{4} & 0.5 & \pi & 10 & \sqrt{2}\end{array}$

1.2 -B- Writing a Rational number as Fractions or Decimals

Case 1: From Fraction to Decimal

- Use a calculator
- The period of a rational number is the infinitely repeating decimal(s) --we put a bar over it.
Ex 1:
a) $\frac{16}{11}=\quad$ the period is
b) $\frac{63}{55}=\quad$ the period is
c) $\frac{1}{2}=$ the period is

Case 2: From Decimal to Fraction
Ex 2: Write the following terminating decimals as reduced fractions.
a) $0.3=$
b) $1.22=$
c) $0.225=$
d) $2.05=$
e) $5.0025=$
f) $3.012=$

Trick: $\quad \frac{x}{9}=0 . \bar{x} \quad$ and $\quad \frac{x y}{99}=0 . \overline{x y}$
Ex 3: Write the following repeating decimals as reduced fractions.
a) $0 . \overline{3}=$
b) $1 . \overline{23}=$
c) $0 . \overline{225}=$
d) $2 . \overline{05}=$
e) $5 . \overline{0025}=$
f) $3 . \overline{012}=$

If period is not right after decimal point!!

Ex 3: write $0.1 \overline{6}$ as a reduced fraction

We multiply by 10 to get the period alone after the decimal point. Since that changes the value we have to undo it later by dividing by 10 again.
Dividing by 10 means just add the zero in the denominator.

Practice:
page 11 \# 4(a-e) page 13 \# 5(a,b,c), 6(a,d)

Method 2: to write $0.1 \overline{6}$ as a reduced fraction

Explanation:

1) Make an equation -write the period twice
2) Multiply both sides by a power of 10 to move decimal point to after 1 period
3) and again to before one period.
4) Subtract the 2 equations
5) Solve for x; and reduce the fraction if possible

Steps:

1) Let $x=0.16 \overline{6}$
2) $100 x=16 . \overline{6}$
3) $-10 x=1 . \overline{6}$
4) $90 x=15.0$
5) $x=\frac{15}{90}$
$=\frac{1}{6}$

Ex 4: write $1.2 \overline{36}$ as a reduced fraction Method 1:

Method 2:

Practice:
page 13 \# 5(d), 6(b,c), 8

1.5 Intervals

Brackets are very important in math and they mean different things. There are 3 types

Round: $P(0,5)$	an ordered pair $(x=0, y=5)$
Curly: $S=\{0,5\}$	order is important so, it is not the same as $(5,0)$
Square: $I=[0,5]$	a set of 2 elements That is $0 \& 5 \in S$
order is not important so, it is the same as $\{5,0\}$ all the real numbers from 0 to 5	same as saying

Set builder Notation \{Inequalities\}

Review: fill in the correct sign so that x is
Less than 5
Greater than 10

At Most 22
At Least 15

Number Line

O Filled: the end number IS in the set Not filled/Empty: the end number IS NOT in the set

乙 Identifies the interval of numbers

Interval Notation (square brackets)

number is CONTAINED in the set.
[-5, 7]
FACING/HUGGING
brackets mean the end

BACK FACING brackets means the end number is NOT CONTAINED in the set.

]5, 9 [

Bounded Intervals

Interval	Set-Builder	Number Line
$[0,3]$		
	$\{x \in R \mid-1 \leq x<5\}$	
		\ldots
	$\{x \in R \mid a<x<b\}$	

Unbounded Intervals

Interval	Set-Builder	Number Line
]-m,3]		
	$\{x \in R \mid x \geq 3\}$	
		\leftarrow^{-3}
	$\{x \in R \mid x<b\}$	

1.6 Natural Number Exponents

 -A- Power of a Real NumberExpanded form: $\quad 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=128$
Exponential form:

$\therefore \quad a^{n}=a \times a \times \ldots \times a \quad(n$ times)

Note that:

$$
\left.\begin{array}{cc}
a^{1}=a & a^{0}=1 \\
a^{n}= & \underline{\text { if }} \text { the ' } a \text { ' is negative } \\
\text { and ' } n \text { ' is odd }
\end{array}\right] \begin{aligned}
& \text { Ex: }(-2)^{3}=(-2)(-2)(-2)=-8 \\
&(-a)^{n}=(-a) \times(-a) \times \ldots \times(-a) \quad(n \text { times }) \\
&-a^{n}=-a \times a \times \ldots \times a \quad(n \text { times })
\end{aligned}
$$

Ex 1: Expand and evaluate:

a) $7^{3}=$
b) $x^{4}=$
c) $9^{1}=$
d) $5^{0}=$
e) $(-8)^{4}=$
f) $-8^{4}=$
g) $(7)(6)(7)(6)=$

Ex 2: Evaluate:

a) $2 \times 10^{3}+6 \times 10^{2}+7 \times 10+3$
b) $\frac{2^{4}+5^{2}}{3^{3}}$

Ex 3: Folding Paper Experiment

\# Folds	\# Sections	Expanded Form	Exponent Form
1	2	2	2^{1}
2	4	2×2	
3			
4			
5			
6			
7			
n			

Claim: A dry piece of paper cannot be folded in perpendicular halves more than seven times, regardless of its size

Mythbusters
http://www.youtube.com/watch?v=kRAEBbotulE

Practice:
Page 28 \#1-8, 9(abc), 10(abc), 11(abc)

1.6-B- Laws of Exponents

Question	Expanded Form	Exponent	Law
$5^{2} \times 5^{4}$			$\mathbf{a}^{\mathrm{m}} \mathbf{x} \mathbf{a}^{\mathrm{n}}=$
$2^{5} \div 2^{2}$			$\mathbf{a}^{\mathrm{m}} \div \mathbf{a}^{\mathrm{n}}=$ If $\mathrm{m}>\mathrm{n}$
$2^{2} \div 2^{5}$		$\mathbf{a}^{\mathrm{m}} \div \mathbf{a}^{\mathrm{n}}=$ If $\mathrm{m}<\mathrm{n}$	
$\left(4^{3}\right)^{2}$		$\left(\mathbf{a}^{\mathrm{m})^{\mathrm{n}}=}\right.$	
$(5 \mathrm{a})^{4}$			$(\mathbf{a b})^{\mathrm{n}}=$
$\left(\frac{3}{4}\right)^{2}$		$\left(\frac{a}{b}\right)^{n}=$	

Ex 1: Simplify these exponents (DO NOT EVALUATE)

$$
\begin{array}{cc}
9^{7} \times 9^{6}= & 3^{7} \div 3= \\
3^{7} \times 3= & 9^{7} \div 9^{6}= \\
4^{7} \times 4^{-3}= & 4^{7} \div 4^{-3}= \\
7^{0} \times 7^{12}= & \frac{7^{12}}{7^{9}}= \\
2^{22} \times 2^{-20}= & 2^{22} \div 2^{-20}= \\
(-6)^{7} \times(-6)^{6}= & \frac{(-6)^{5}}{(-6)^{7}}=
\end{array}
$$

Therefore $5^{0}=1$
Why is $a^{0}=1$

$$
\begin{aligned}
& 5^{3} \div 5^{3} \\
= & \frac{5 \times 5 \times 5}{5 \times 5 \times 5} \\
= & \frac{125}{125} \\
= & =5^{3} \\
= & =5^{3-3}
\end{aligned}
$$

Ex 2: Simplify these exponents $\left(2^{7}\right)^{2}=\square \quad \frac{\left(x^{3}\right)^{2}}{x^{2}}=$
$\left(3^{3}\right)^{2}=$ \qquad
$\left(a^{4}\right)^{3}=$ \qquad
$\left(q^{n}\right)^{n}=$
$\left(5^{5}\right)^{5}=$
\qquad
\qquad
$\left((-3)^{2}\right)^{4}=\square$

$$
\frac{\left(x^{3}\right)^{2}}{x^{2}}=
$$

Ex 3: Simplify these exponents
\qquad

Ex 4: Express each power as a new power with the given base
$16^{2}=\quad=2-$
$16^{2}=\quad=4-$
$25^{3}=\quad=5-$
$27^{3}=\quad=3-$

Ex 4: Solve $4^{4} \div 2^{2}=$

Ex 5: Simplify these exponents
$\frac{3 a^{2}}{9 a^{4}}$
$\frac{15 a^{5}}{25 a^{2}}$

$$
\frac{3 a^{4}}{6 b^{2}} \times \frac{2 a^{2}}{b^{4}} \times \frac{b^{9}}{a^{5}}
$$

\qquad

Ex 6: Simplify
$(3 a)^{6}=$
$\square\left(\frac{5}{3}\right)^{4}=$ \qquad
$(6 b)^{3}=$ \qquad

$$
\left(\frac{7}{x}\right)^{3}=
$$

\qquad
$\left(2 a^{3}\right)^{2}=$

$$
\left(\frac{b}{8}\right)^{2}=
$$

$(a \times b)^{n}=$ \qquad

Ex 4: Fill in with \equiv or \neq

1) $5^{2}+5^{3} \quad 5^{5}$
2) $2^{4} \times 2^{3} \quad 2^{12}$
3) $4^{2} \times 5^{3} \quad 20^{5}$
4) $5^{2}+5^{2} \quad 10^{4}$
5) $5^{6}-5^{2} \quad 5^{4}$
6) $6^{4} / 2^{2} \quad 3^{2}$
7) $5^{6} / 5^{2} \quad 5^{3}$
8) $x \quad x^{0}$

Ex 7: Simplify
12f) $\left(5 x^{3}\right)^{2}=$
13f) $\left(3 a^{4} b^{2}\right)^{2}\left(-a^{5} b\right)^{2}\left(2 a^{3} b^{2}\right)^{2}$
$=$
$=$
15d) $\left(\frac{3 x^{2}}{y^{3}}\right)^{3}\left(\frac{y^{4}}{9 x^{4}}\right)^{2}=$

Practice:

Page 30-35 \# 1-10, 12, 13, 15 - 17 only (acegik) of each question

Ex 8: Extra Practice - Simplify
a) $\frac{\left(3 x^{3} y^{5}\right)^{2}}{3 x^{2} y^{4}}$
\qquad
c) $\frac{\left(5 a^{6} b^{4}\right)^{3}}{\left(5 a^{2}\right)^{3}} \quad$ d) $\frac{\left(6 x^{2} y^{3}\right)^{3}}{\left(2 x^{4} y^{2}\right)^{2}}$
$=$ \qquad
b) $\left.\frac{\left(4 a^{2} b^{3}\right)^{3}}{\left(2 a^{3} b^{4}\right)^{2}} \quad \begin{array}{c}\text { Evaluate } \\ \text { at } \\ a=-2 \text { and } \\ b=-1\end{array}\right)$
\qquad
\qquad

1.7 Negative Exponents

Warm up: Evaluate using the calculator
$2^{2}=$
$2^{-2}=$
$-2^{2}=$
$-2^{-2}=$
$(-2)^{2}=$
$(-2)^{-2}=$
$\left(2^{-2}\right)^{2}=$
$\left(\frac{1}{2}\right)^{-2}=$

Let's see what a negative exponent means...

A base raised to a NEGATIVE exponent is equivalent to 1 over the original base with the same exponent but positive.

EX 1: Write with a positive exponent
a) $3^{-2}=$

$$
\text { d) } p^{-3}=
$$

\qquad
e) $\frac{a^{3}}{a^{7}}=$
f) $\frac{b^{5}}{b^{10}}=$
b) $2^{-2}=$ \qquad
c) $\left(10^{2}\right)^{-2}=$
\qquad
\qquad

More examples page 36

2(e) $\left(\frac{3 a^{-2}}{b^{4}}\right)^{-2} \quad 5(f)\left(\frac{3^{3} 3^{-2}}{3^{-1}}\right)^{-2}$
8(b) 0.01

9(i) 10(e) 11(e)
$9(i) \quad 10(e) \quad 11(e)$
$(0.01)^{2}(0.1)^{-1} \quad\left(a^{2} b^{-1}\right)\left(a^{-2} b^{3}\right) \quad\left(\frac{a^{4}}{2 b^{-2}}\right)^{-3}\left(\frac{4 b^{-1}}{a^{8}}\right)^{-2}$
$\left(\frac{a^{4}}{2 b^{-2}}\right)^{-3}\left(\frac{4 b^{-1}}{a^{8}}\right)^{-2}$

More examples page 36

Practice:
Page 36+ \# 1-13

1.8 Scientific Notation

Warm up: Perform the following operations

1) $14 \div 10=$
2) $482 \div 1000=$
3) $662 \div 10^{2}=$
4) $127 \times 10=$
5) $48023 \times 10^{4}=$

Ex 2: Write the following numbers in scientific notation:

1) $360=$	6) $1226000=$
2) $0.4=$	7) $0.025=$
3) $7523=$	8) $0.000045=$
4) $45000=$	9) $81=$
5) $235=$	

5) $235=$
Examples 3:
$125000000000 \div 0.00000000025$

1.8 Scientific Notation

When numbers get really Big or
really small it is inconvenient to write out all of the zeros.
For this reason we use Scientific Notation.
A positive number in scientific notation is in the form:
a $\times 10^{n} \quad$ where $1 \leq a<10$; and n is an integer.

Ex 1: Express in scientific notation a x $10^{n} 1 \leq a<10$ POSITIVE EXPONENT NEGATIVE EXPONENT
a) 5600
b) 0.00042

Examples 2:

Examples 1:

$42000000000000 \times 72000000000$
$42000000000 \times 0.00000000021$

Examples 4:

$42000000000 \div 0.000000000126$

Practice:

1.9 Rational Exponents

Warm up:

1) $7^{2}=$
2) $\sqrt{49}=$
3) $3^{3}=$
4) $\sqrt[3]{27}=$
5) $5^{4}=$
6) $\sqrt[4]{625}=$
7) $(-3)^{3}=$
8) $\sqrt[3]{-27}=$
9) $\sqrt[3]{8}=$
10) $\sqrt[4]{81}=$
11) $\sqrt[4]{-16}=$
12) $\sqrt[3]{-125}=$

Ex 1: Evaluate:

1) $169^{\frac{1}{2}}=$
2) $(-169)^{\frac{1}{2}}=$
3) $-169^{\frac{1}{2}}=$
4) $125^{\frac{1}{3}}=$
5) $(-125)^{\frac{1}{3}}=$

$$
\begin{array}{|lll|}
\hline \text { If } \quad b^{n}=a & \text { then } & \sqrt[n]{a}=b \\
& \text { or } & a^{\frac{1}{n}}=\sqrt[n]{a}=b \\
\hline
\end{array}
$$

Note that $\sqrt[n]{a}$ does not exist if n is even and $\mathrm{a}<0$
Example: $\sqrt[2]{-64}$ and $\sqrt[4]{-64}$ don't exist
Where as $\sqrt[3]{-64}=-4$, because

$$
(-4)^{3}=(-4)(-4)(-4)=-64
$$

Ex 1: Evaluate:
6) $-125^{\frac{1}{3}}=$
7) $\sqrt[3]{2^{3}}=$
8) $144^{-\frac{1}{2}}=$
9) $\sqrt[3]{-\frac{8}{27}}=$

Ex 2: Simplify:
а) $\sqrt[3]{\frac{8 x^{9}}{x^{3}}}$
b) $\left(\frac{9 a^{-2}}{b^{4}}\right)^{-\frac{1}{2}}$
$=$
$=$
-

Practice:
page 42 \# 1-6

